随笔

记录,分享,然后享受生活。

0%

穿针引线法的原理

对于形如

K=a1·a2·a3···anb1·b2·b3···bmai,biR{0}

的式子,可知字母 K 的符号的正负性取决于 a1,a2,a3,···,an,b1,b2,b3,···,bmm+n 个数中负因子的个数——如果有偶数个(注意0是一个特殊的偶数),则 K 是正数。如果有奇数个,则 K 是负数。

同理,对于式子

P(x)=(xa1)·(xa2)·(xa3)···(xan)(xb1)·(xb2)·(xb3)···(xbm)

x 大于 a1,a2,a3,···,an,b1,b2,b3,···,bm 中最大的那个数的时候,式子中的每个因式都是大于零的(就是说,因式中取负数的个数为零)。但是当 x 每经过一次分子或者分母的根,就有一个因式改变符号,由大于零变为小于零,而其余因式的符号不变。这时整个式子因式取负数的符号的奇偶性就发生的变化,也就是整个 P(x) 的符号发生了变化。2

参考资料

1. 穿针引线法
2. 穿针引线法解不等式的原理解释

Gitalk 加载中 ...